KNX

4-/8-/16-CHANNEL KNX MULTIFUNCTIONAL ACTUATORS WITH 12 / 12 / 23 BINARY/ANALOG INPUTS

IT KNT 004 IT KNT 008

IT KNT 016

USER MANUAL

INTRODUCTION

- KNX Multifunction Actuators that can work as:
- IT KNT 004: 4-channel Switching Actuator or 2-channel Blinds/Shutters Actuators.
- IT KNT 008: 8-channel Switching Actuator or 4-channel Blinds/Shutters Actuators.
- IT KNT 016: 16-channel Switching Actuator or 8-channel Blinds/Shutters Actuators.
- High load capacity, with I6A built-in relays, as well as a zero-crossing-point control, which allows switching very high loads, even capacitive type.
- Incorporate 12 / 12 / 23 Inputs:
- IT KNT 004: 8-Binary Inputs + 4-Binary/Analog Inputs
- IT KNT 008: 8-Binary Inputs + 4-Binary/Analog Inputs
- IT KNT 016: 16-Binary Inputs + 7-Binary/Analog Inputs
- These inputs can be independently parameterized through the ETS Software:
- Binary Input: allows the connection of a conventional voltage-free binary sensor or switch.
- Analog Input: allows the connection of a DINUY temperature probe (ST KNT 001 or ST KNT 002).
- Incorporates a front keypad for independent manual control of each output, as well as status indicator LEDs.
- Allows to enable and configure up to 4/4/7 independent Heating and / or Cooling Thermostats.
- It incorporates 8/8/I6 Logic Functions, Centralized Control, Scenes, Time Function, etc.
- Possibility of connecting different phases in each output channel.
- Integrated Bus Coupling Unit (BCU).
- DIN-rail mounting, 4 / 4 / 8 modules wide.
- Programming and commissioning via ETS5 or later versions.
- Technical specifications:

Nominal Voltage		$230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
$\begin{aligned} & x \\ & \underline{z} \end{aligned}$	Voltage range	$21 \sim 32 \mathrm{VDC}$
	Consumption	IT KNT 004 / IT KNT 008: < 3mA // IT KNT 016: < 9mA
	Connection type	KNX Bus connector
	Commissioning	ETS5 or later
	KNX Media	TPI
	Configuration Mode	System Mode
$\begin{aligned} & \text { n} \\ & \text { an } \\ & \hline 1 \end{aligned}$	Number of Inputs	IT KNT 004: 4 Binaries + 8 Binaries/Analogs IT KNT 008: 4 Binaries + 8 Binaries/Analogs IT KNT 016: 7 Binaries + 16 Binaries/Analogs
	Type	Binaries or Analogs
	Cable maximum length	Binary Inputs: <200m Binary/Analog Inputs: $<10 \mathrm{~m}$
	Scanning voltage	20Vdc
	Input current	0,5mA
$\begin{aligned} & \stackrel{n}{3} \\ & \stackrel{2}{3} \\ & 0 \end{aligned}$	Channels	IT KNT 004: 4 Switching or 2 Blinds IT KNT 008: 8 Switching or 4 Blinds IT KNT 016: 16 Switching or 8 Blinds
	Load LED Lamps Incandescence Motors	$\begin{aligned} & \text { I6A / 250V~ per channel } \\ & 400 \mathrm{~W} \\ & 3000 \mathrm{~W} \\ & 700 \mathrm{VA} \end{aligned}$
	Isolating Voltage	$4 \mathrm{~K} \mathrm{~V}_{\text {AC }}$ (supply/bus voltage)
	Cable section	$\leq 2,5 \mathrm{~mm}^{2}$
Dimensions		IT KNT 004: 4 DIN units (70 mm) IT KNT 008: 4 DIN units (70 mm) IT KNT 016: 8 DIN units (140 mm)
Working temperature		$-5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Storage temperature		$-30^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
Protection degree		IP20 (EN60529)
Directives		Low-voltage 73/23/EEC EMC 204/I08/EC
According to the Standards		KNX Standard 2.0 EN60669-I, 2-I y 2-3
Marking		EIB/KNX

CONFIGURATION

GENERAL Configuration

An initial screen is available where it is possible to configure each channel of the Actuator for the control of I Blind or 2 Switching channels:

Transmission and switching delay after recovering bus voltage ($\mathbf{0} . .255 \mathrm{sec}$): Sets the delay time for sending the switching telegram after bus voltage is restored.

Type of Actuator: Allows selecting the Actuator which is going to be parameterized: IT KNT $004-4$ channels, IT KNT 008-8 channels or IT KNT 016-16 channels.

Type of Actuator	8 output channels
	4 output channels
8 output channels	
16 output channels	

ch A..D operating mode: Configures each pair of complementary channels as independent switching channels or as a blind channel.

Central Control objects: It allows a centralized control of each channel if it has been enabled.

Central Control objects	No
	No
	1 object 2 objects

- No: centralized control is not enabled.
- I object: an object, "[Central] Switch / Move Blind", is enabled for the control of all enabled channels.
- 2 objects: Two objects are enabled. One for the control of the enabled switching channels, "[Central] Switch", and the other for the control of the enabled blind channels, "[Central] Move Blind".

Enable Binary/Analog Inputs: allows enabling the Binary/Analog Inputs of the Actuator:
-IT KNT 008: 4 Binary/Analog Inputs.
-IT KNT 0I6: 7 Binary/Analog Inputs.
For its configuration, see the document: "Inputs - User Manual"
Enable Binary Inputs: allows enabling the Binary Inputs of the Actuator:

- IT KNT 008: 8 Binary Inputs.
-IT KNT 016: 16 Binary Inputs.
For its configuration, see the document: "Inputs - User Manual"
Enable Logics: allows enabling the logic functions module:
-IT KNT 008: 8 Logic Functions.
-IT KNT 016: I6 Logic Functions.
For its configuration, see the document: "Logics - User Manual"
Enable Thermostats: allows enabling the Heating or Cooling Thermostat module:
- IT KNT 008: 4 Thermostats.
-IT KNT 016: 7 Thermostats.
For its configuration, see the document: "Thermostat - User Manual"

OUTPUTS Configuration

Each channel can be configured for the control of 2 independent loads or I single blind:

ch A operating mode	○ 2 -ch Switch Actuator
1-ch Blind/Roller Actuator	

Switch Channel Configuration

- Switch Feedback: Enables the object "[Out] Switch Feedback" which reports the On/Off status of the channel.

Switch Feedback	No
No	
Always	
Only after change	

No: "[Out] Switch Feedback" object is not available.
Always: "[Out] Switch Feedback" object is always sent, whether or not there is a change in the state of the channel.
Only after change: "[Out] Switch Feedback" object is sent when changes the status of the channel.

- Object value of Switch Feedback: Sets the polarity of "[Out] Switch Feedback" object.

$$
\text { Object value of Switch Feedback } \quad \text { Closed }=0 \text {, Open }=1 \bigcirc \text { Closed }=1 \text {, Open }=0
$$

- Reaction after bus failure: Determines the behavior of the channel when the bus voltage is restored.

Reaction after bus failure	Open contact
Open contact Close contact Contact unchanged	

- Object "Switch On/Off" after recovering bus voltage: Sets the behavior of the channel, through the "[Out] Switch On/Off" object, after recovering bus voltage.
Object "Switch On/Off" after recovering bus
voltage

Set object to 0

Set object to 1
Not write
Set object to last state

- Output polarity: Determines the polarity of the output channel.

Output polarity	Normally Open contact
Normally Closed contact	

- Output Line phase respect to reference: Allows the "zero-crossing-point" switching control of the relay. This type of control makes it possible to switch high loads without risk of damaging the relay due to the high current peaks of the load at starting. The Reference Phase is that with which the Actuator is supply in L and N .

```
Same Phase as Reference
Same Phase as Reference
\(120^{\circ}\) offset Phase respect Reference
\(240^{\circ}\) offset Phase respect Reference
```


Enable Time Function: Enables timing features.

	Actuator Configuration	Object "Disable Time Function" after recovering bus voltage Time Function	0: Enable Time Function1: Disable Time Function	
	Actuator Configuration		Staircase Light Time Switch	\checkmark
-	OUTPUT A1	Staircase light Time Switch timing (sec) Timer is retriggerable Staircase light Time Switch early switch-off	0	$\stackrel{*}{*}$
	Configuration			
			$1=$ On, $0=$ Off	*
Time Function		Pre-warning before end of time Staircase time changeable via object		
+	OUTPUT A2			
$+$	OUTPUT B1			
$+$	OUTPUT B2			
$+$	OUTPUT C1			
$+$	OUTPUT C2			
$+$	OUTPUT D1			
$+$	OUTPUT D2			

Object "Disable Time Function" after recovering bus voltage: defines the value of the object "[Out] Disable Time Function" when bus voltage is restored. The timing functions may return Enabled (0) or Disabled (I).

Time Function: actuator behavior as a timer.

Time Function

- Staircase Light Time Switch: timing function in which the output is activated through a I-bit object, "[Out] Time Switch", and deactivated after a set time.

Time Function	Staircase Light Time Switch
Staircase light Time Switch timing (sec)	0
Timer is retriggerable	\square
Staircase light Time Switch early switch-off	$1=0 \mathrm{n}, 0=$ Off
Pre-warning before end of time	No
Staircase time changeable via object	\square

Staircase light Time Switch timing (sec): between 0 and 65535 seconds.
Timer is retriggerable: allows resetting the set time and start the timing again.
Staircase Time Switch early switch-off:

```
Staircase light Time Switch early switch-off
```

```
1=On, 0 = Off
1=On,0=Off
1=ON,0 = no action
0 or 1 = ON, OFF not possible
```


Pre-warning before end of time:

Pre-warning before end of time

```
No
No
Via object
Via quick switching
    Via object and quick switching
```

- Pre-warning time (sec): between 0 and 65535 seconds.

Staircase time changeable via object: enables a 2-byte object, "[Out] Staircase Time (sec)", which allows setting the timing through the bus.

- Delayed On / Off: allows to turn on and off with a delay time.

Time Function		\checkmark
On delay time (sec)	1	$\stackrel{*}{*}$
Off delay time (sec)	1	$\stackrel{\rightharpoonup}{*}$

- Flashing: flashing with an On time and Off time.

Time Function	Flashing
Flashing when "Time Switch" object is	Off (0) ○ On (1)
Flash On time (sec)	5
Flash Off time (sec)	5

Enable Preset Function: enables two I-bit objects which allow saving, "[Out] Set Preset $1 / 2$ ", or recover, "[Out] Call Preset $1 / 2$ ", a previous set action.

Reaction on Preset 1 (telegram 0)	No reaction
Reaction on Preset 2 (telegram 1)	No reaction
Preset can be set via bus	\square

Enables Scenes Function: allows to save and recover up to 5 different Scenes.

Scene 1	Scene 1	\checkmark
Scene 1 Preset value	(Off	
Scene 2	Scene 2	\checkmark
Scene 2 Preset Value	O Off	
Scene 3	Scene 3	\checkmark
Scene 3 Preset Value	O Off	
Scene 4	Scene 4	*
Scene 4 Preset Value	O Off	
Scene 5	Scene 5	*
Scene 5 Preset Value	(Off	

Enable Logical Function: allows to enable up to 2 different logical functions. The logic gate can be: AND, OR or XOR.

```
Logical connection 1 Enable
Logical connection 1 Function
Logical connection 1 Inverted
Object value "Logical connection 1" after
recovering bus voltage
Logical connection 2 Enable
```

Enable Forced Function: enables the Forced function. Its priority is higher than the standard telegrams. It is possible to enable a I-bit or 2-bit object, "[Out] Forced".

Object "Forced" type	O 1-Bit object \bigcirc 2-Bit object
Object "Forced" polarity	O 1: Switch-Off \bigcirc 1: Switch-On
Object "Forced" state after recovering bus voltage	O Not Forced \bigcirc Forced

Enable Threshold Function: a threshold value of I or 2 bytes is established, and pre-established actions are carried out based on 2 set values.

Data type of object "Threshold Input"	O 1 Byte (0.255) 2 Bytes ($0 . .65535$)	
Change Threshold value 1 over the bus		
Threshold value $1(0 . .255)$	255	\star
Threshold value $2(0 . .255)$	0	\star
Threshold value after recovering bus voltage	0	$\stackrel{\rightharpoonup}{*}$
Threshold values define hysteresis		
Object value < Threshold value 1	No reaction	\checkmark
Value $1 \leq$ Object value \leq Value 2	No reaction	\checkmark
Object value > Threshold value 2	No reaction	\checkmark

Manual Control disable: allows enabling/disabling the manual control of the channel from the front keypad of the Actuator.

Enable Central Function: Includes or not the channel in the centralized control. The control object for the channels configured as Switch is "[Central] Switch / Move Blind". Depending on the configuration of the channel, as well as the number of objects enabled for centralized control, the possible actions will be different.

Central Function	No reaction
	No reaction
	Any value $=$ On
	Any value $=$ Off
	$0=$ Off; $1=$ On
$0=$ On, $1=$ Off	
	$0=$ No reaction, $1=$ On
$0=$ Off, $1=$ No reaction	

No reaction: the channel will not be included in the centralized control.
Any value = On: any value received on the "[Central] Switch" object will activate the channel.

- Any value = Off: any value received on the "[Central] Switch" object will deactivate the channel.
$\mathbf{0}=\mathbf{O f f}, \mathbf{I}=\mathbf{O n}$: if a 0 is received in the "[Central] Switch" object, the channel will be switched off, while if a I is received, the channel will be switched on.
$\mathbf{0}=\mathbf{O n}, \mathbf{I}=\mathbf{O f f}$: if a 0 is received in the "[Central] Switch" object, the channel will be switched on, while if a I is received, the channel will be switched off.
- $\mathbf{0}=\mathbf{N o}$ reaction, $\mathbf{I}=\mathbf{O n}$: if a 0 is received in the "[Central] Switch" object, the channel will do nothing, while if a I is received, the channel will be switched on.
$\mathbf{0}=\mathbf{O f f}, \mathbf{I}=$ No reaction: if a 0 is received on the "[Central] Switch" object, the channel will be switched off, while if a I is received, the channel will not react.

Blind Channel Configuration

	Actuator Configuration	Type of Device	Venetian Blind	*
	Actuator Configuration	Behavior after recovering bus voltage	No action	\checkmark
		Blind Movement time (sec)	1	$\stackrel{\rightharpoonup}{*}$
	BLIND / ROLLER A	Slats Movement time ($\mathrm{x} 0,1 \mathrm{sec}$)	20	$\stackrel{\rightharpoonup}{*}$
	Configuration	Reaction after bus failure	O Stop No reaction	
	Advanced	Extra time for Up movement (\%)	0	$\stackrel{*}{*}$
+	OUTPUT B1	Reversion Pause time (msec)	500	$\stackrel{\rightharpoonup}{*}$
+	OUTPUT B2	Step operation possible	O No (only Stop) Yes	
+	OUTPUT C1	Output Line phase respect to reference	Same Phase as Reference	*
+	OUTPUT C2			
$+$	OUTPUT D1			
	OUTPUT D2			

Type of Device: Sets the operating mode of the channel.

Type of Device

- Venetian Blind (blinds or blinds with slats):

Type of Device	Venetian Blind	\checkmark
Behavior after recovering bus voltage	No action	\checkmark
Blind Movement time (sec)	1	$*$
Slats Movement time (x $0,1 \mathrm{sec}$)	20	$\stackrel{\square}{*}$
Reaction after bus failure	O Stop No reaction	
Extra time for Up movement (\%)	0	$*$
Reversion Pause time (msec)	500	$\stackrel{\rightharpoonup}{*}$
Step operation possible	O No (only Stop) Yes	
Output Line phase respect to reference	Same Phase as Reference	\checkmark

- Roller Shutter/Awning:

Type of Device	Roller Shutter/Awning	\checkmark
Behavior after recovering bus voltage	No action	\checkmark
Roller Movement time (sec)	1	$\stackrel{\square}{*}$
Fabric tensioning time (sec)	0	\star
Reaction after bus failure	O Stop No reaction	
Extra time for Up movement (\%)	0	\star
Reversion Pause time (msec)	500	$\stackrel{*}{*}$
Step operation possible	\bigcirc No (only Stop) Ye	
Output Line phase respect to reference	Same Phase as Reference	\checkmark

- Venting Louver:

Type of Device	Venting Louver
Behavior after recovering bus voltage	No action
Louver Movement time (sec)	1
Reaction after bus failure	O Stop
Extra time for Up movement (\%)	0
Reversion Pause time (msec)	500
Step operation possible	O No (only Stop)
Output Line phase respect to reference	Same Phase as Reference

General Parameters

- Regardless of the selected configuration, there are some common parameters by default:

Behavior after recovering bus voltage: action when the KNX bus voltage is restored.

Behavior after recovering bus voltage	No action
	No action
	Up
	Down
	Go to position

Louver / Blind / Roller Movement time (sec): set the movement time from when the louver/blind/roller is fully raised (position $=0 \%$) until it moves completely down (position $=100 \%$), and vice versa. This time can be set between I and 3600 seconds.

- Slats Movement time (only Venetian blind): establishes the total time of movement of the slats from when they are completely open (position $=0 \%$) until they close completely (position $=100 \%$), and vice versa. This time can be set between 2 and 600 tenths of a second. The number of steps of the slats will be calculated by dividing this time between the duration of the step, established in the general parameters.

Fabric tensioning time (only Roller shutter/Awning): establishes a time of tension of the fabric when the awning is lowered completely (100%) to avoid that the same one is damaged. It is a rising movement.

Reaction after bus failure: shutter behavior after a KNX bus fault detected.

Reaction after bus failure	O Stop \bigcirc No reaction

Extra time for Up movement (\%): time added to the moving-up to complete the movement. Due to the weight of the blind, it may take longer to move up than down.

Reversion Pause time (msec): extra time that the blind is paused when changing the direction of movement.

- Step operation possible: sets if the Step action, or only Stop, is allowed through the object "[BL] Stop / Step Up/Down".

$$
\text { Step operation possible } \quad \text { O No (only Stop) } \bigcirc \text { Yes }
$$

Output Line pase respect to reference: allows to control the "zero crossing" in the relay switching of the corresponding channel. This type of control makes it possible to switch high loads without damaging the relay contacts due to the high current peaks of the load at the starting. The Reference Phase is that with which the Actuator is supplied in L and N.

Advanced Parameters

- Furthermore, in both operating configurations several advanced functions are available:

Enable object: Blind/Roller/Louver position Feedback (\%): allows knowing the position of the blind through the Ibyte object, "[BL] Blind/Roller/Louver position Feedback". When this object is enabled, it will be necessary to set the period for sending it: "Time to send "Current position" (sec)". This time can be set between 60 and 3600 seconds.

```
Enable object: Blind position Feedback (%)
Time to send "Current position" (sec) 60 *
```

Enable object: Slats position Feedback (\%): allows knowing the position of the slats through the I-byte object, "[BL] Slats position Feedback". When this object is enabled, it will be necessary to set the sending cycle: "Time to send "Slats position" (sec)". This time can be set between 60 and 3600 seconds.

```
Enable object: Slats position Feedback (%)
```

Time to send "Slats position" (sec) $\quad 60 \quad \stackrel{\rightharpoonup}{*}$

- Enable object: Movement Feedback: reports the direction of movement of the blind through the I-bit object, "[BL] Movement Feedback".
- Enable Weather Alarms: enables Wind, Rain and Frost Alarms. These alarms prevail over all other functions.

	Actuator Configuration	Wind Alarms		
Actuator Configuration		Enable object: Wind Alarm 1 Enable object: Wind Alarm 2		
-	BLIND / ROLLER A	Enable object: Wind Alarm 3 Enable Wind Alarm Watchdog		
Configuration		Behavior when starting Wind Alarm No action		
Advanced		Behavior when finishing Wind Alarm	No action	*
Alarms				
+		Rain Alarm		
	OUTPUT B1	Enable object: Rain Alarm		
+ OUTPUT B2		Frost Alarm		
+	OUTPUT C1	Enable object: Frost Alarm		
+	OUTPUT C2	Alarms priority		
+	OUTPUT D1	Weather Alarms priority	Wind > Rain > Frost	*
+	OUTPUT D2	Forced vs Weather Alarm Priority	1 - Forced opera 1 - Weather Alar	

- Wind Alarms: up to 3 wind alarms can be enabled.

Wind Alarms

Enable object: Wind Alarm 1
Enable object: Wind Alarm 2
Enable object: Wind Alarm 3
Enable Wind Alarm Watchdog
Behavior when starting Wind Alarm
Behavior when finishing Wind Alarm

- Enable object: Wind Alarm I..2: allows enabling wind alarm control and its watchdog time.
- Behavior when starting Wind Alarm: establishes the behavior of the blind when an alarm situation occurs in one of the 3 objects. The different options are: No action, Up, Down or Stop.
- Behavior when starting finishing Alarm: sets the behavior of the blind at the end of the wind alarm. The different options are: No action, Up, Down, Stop or Go to last position.
- Rain Alarm: I rain alarm can be enabled.

Rain Alarm

Enable object: Rain Alarm
Enable Rain Alarm Watchdog
Behavior when starting Rain Alarm

- Enable Rain Alarm Watchdog: allows enabling rain alarm and its watchdog time.
- Behavior when starting Rain Alarm: establishes the behavior of the blind when an alarm situation occurs in one of the 3 objects. The different options are: No action, Up, Down or Stop.
- Behavior when finishing Rain Alarm: sets the behavior of the blind at the end of the wind alarm. The different options are: No action, Up, Down, Stop or Go to last position.
- Frost Alarm: I frost alarm can be enabled.

Frost Alarm

Enable object: Frost Alarm
Enable Frost Alarm Watchdog
Behavior when starting Frost Alarm
No action

Behavior when finishing Frost Alarm

- Enable Frost Alarm Watchdog: allows enabling frost alarm and its watchdog time.
- Behavior when starting Frost Alarm: establishes the behavior of the blind when an alarm situation occurs in one of the 3 objects. The different options are: No action, Up, Down or Stop.
- Behavior when finishing Frost Alarm: sets the behavior of the blind at the end of the wind alarm. The different options are: No action, Up, Down, Stop or Go to last position.
- Alarms priority: sets the priority level of the different alarms.
- Weather Alarms priority: defines the hierarchy of priorities between the different alarms.

Weather Alarms priority	Wind $>$ Rain $>$ Frost
	Wind $>$ Rain $>$ Frost
	Wind $>$ Frost $>$ Rain
	Rain $>$ Wind $>$ Frost
	Rain $>$ Frost $>$ Wind
	Frost $>$ Rain $>$ Wind
	Frost $>$ Wind $>$ Rain

- Forced vs Weather Alarm Prority: sets the priority between weather alarms and forced action.

Forced vs Weather Alarm Priority	O 1 - Forced operation 2 - Weather Alarm
1 - Weather Alarm 2 - Forced operation	

Enable Sun Protection: function that allows protection from the sun inside the room.

Type of Protection object	O 1 -Bit On/Off object \bigcirc Lux level value object	
Sun Protection object polarity	O 1 : Sun Protection On \bigcirc 0: Sun Protection On	
Delay time to Start Sun Protection (sec)	1	$*$
Behavior when starting Sun Protection	No action	
Delay time to Finish Sun Protection (sec)	1	\sim
Behavior when finishing Sun Protection	No action	\sim

- Type of Protection object: allows setting the protection according to I-bit object or the Lux value received from a brightness sensor.
- I-Bit On/Off object: enables a I-bit input object for the sun protection function, "[BL] Sun Protection Input". In this case, it is necessary to define:
- Sun Protection object polarity: 0 or I, which will trigger the protection.
- Delay time to Start Sun Protection: I ~ 3600 seconds.
- Behavior when starting Sun Protection: No action, Up, Down, Stop, Call Scene, Go to position or variable via position object (activate the object "[BL] Sun Protection position Input".
- Delay time to Finish Sun Protection (sec): I ~3600 seconds.
- Behavior when finishing Sun Protection: No action, Up, Down or Go to the last position.
- Lux level value object: enables a 2-byte input object for the sun protection function, "[BL] Lux level Input". In this case, it is necessary to define:

Type of Protection object	1-Bit On/Off object \bigcirc Lux level value object	
Lux value to Start Protection	1000	$\stackrel{\rightharpoonup}{*}$
Lux value to Finish Protection	500	$\stackrel{\rightharpoonup}{*}$
Delay time to Start Sun Protection (sec)	1	$\stackrel{\rightharpoonup}{*}$
Behavior when starting Sun Protection	Variable via position object	\checkmark
Delay time to Finish Sun Protection (sec)	1	\uparrow
Behavior when finishing Sun Protection	No action	\checkmark

- Lux value to Start Protection: I ~ 3600 Lux.
- Lux value to Finish Protection: I ~ 3600 Lux.
- Delay time to Start Sun Protection (sec): I ~ 3600 seconds.
- Behavior when starting Sun Protection: No action, Up, Down, Stop, Call Scene, Go to position or Variable via position object (activate the object "[BL] Sun Protection position Input".
- Delay time to Finish Sun Protection (sec): I ~3600 seconds.
- Behavior when finishing Sun Protection: No action, Up, Down or Go to previous position.

Enable Scenes Function: allows to preset up to 8 different Scenes. In each Scene the position of the Blind and the position of the Slats must be set.

Scene 1		\checkmark
Scene 1 Position (\%)	0	\star
Scene 1 Slats Position (\%)	0	$*$

Forced state after recovering bus voltage: enables the Forced function. Its priority is higher than standard operating orders and it can be defined, or not, over alarms, in the Alarms window.

> Forced state after recovering bus voltage

Manual Control disable: enable, or not, the manual control of the actuator from the front keypad of the device.

Disable relay switching with zero-cross control: in case of controlling the slats of the blind, it will be necessary to activate this parameter to achieve optimal results in the movement of the same.

Enable Central Function: establishes the behavior of the blind in case of receiving a telegram from the Central Function. The control object for the channels configured as Blind is "[Central] Switch / Move Blind" or "[Central] Move Blind", depending on the number of objects enabled for centralized control (I or 2).

Central Function	No reaction
	No reaction
	Any value $=$ Up
	Any value = Down
	Any value = Position
	$1=$ Subir, $0=$ Bajar
$0=$ No reaction, $1=$ Down	
$0=$ Up, $1=$ No reaction	

- No reaction: the channel does not respond to centralized orders.
- Any value = Up: any value received in the object "[Central] Move Blind" will produce a moving-up of the blind connected to this channel.
- Any value = Down: any value received in the object "[Central] Move Blind" will produce a moving-down of the blind connected to this channel.
- Any value $=$ Position: any value received in the object "[Central] Move Blind" will cause a movement of the blind connected to this channel to the set value.
- $0=U_{p}, I=$ Down: a 0 received in the object "[Central] Move Blind" will produce a moving-up of the blind connected to this channel, and a I will cause a moving-down.
- I = Up, 0 = Down: : a I received in the object "[Central] Move Blind" will produce a moving-up of the blind connected to this channel, and a 0 will cause a moving-down.
- $0=$ No reaction, $I=$ Down: a 0 received in the object "[Central] Move Blind" will not produce any action on the blind connected to this channel, and a I will produce a moving-down.
- $0=$ Up, I = No reaction: a I received in the object "[Central] Move Blind" will not produce any action on the blind connected to this channel, and a 0 will produce a moving-down.

Communication Objects

Central Function Objects

	Number *	Name	Object Function	Length	C	R	W	T	U	Data Type	Priority
$\stackrel{+}{+}$	1	[Central] Switch	On/Off	1 bit	C	-	W	-	-	switch	Low
$\stackrel{+}{+}$	2	[Central] Move Blind	Up / Down / Position	1 bit	C	-	W	-	-	switch	Low

Number	Name	Function	Description
I	[Central] Switch	On/Off	Central control object for channels configured as Switches or for channels configured as Blind, in case of enabling a single control object

2
[Central] Move Blind
Up / Down / Position

Central control object for channels configured as Blind, if two control objects are enabled

Switch Channel Objects

Number *	Name	Object Function	Length	C	R	W	T	U	Data Type	Priority
$\underline{-\vec{t}} 19$	[Out B1] Switch Feedback	$1=\mathrm{On}, 0=\mathrm{Off}$	1 bit	C	-	-	T	-	switch	Low
- $\overrightarrow{\boldsymbol{t}}$ \| 20	[Out B1] Switch On/Off	$1=\mathrm{On}, 0=\mathrm{Off}$	1 bit	C	-	W	-	-	switch	Low
- $\overrightarrow{\boldsymbol{t}} \mid 21$	[Out B1] Permanent ON	$1=\mathrm{On}, 0=\mathrm{Off}$	1 bit	C	-	W	-	-	switch	Low
$\underline{-1} \mid 22$	[Out B1] Disable Time Function	1 = Disable, 0 = Enable	1 bit	C	-	W	-	-	enable	Low
- $\overrightarrow{\text { t }}$ \| 23	[Out B1] Change Threshold 1	1 Byte value	1 byte	C	-	W	-	-	counter pulses (0.255)	Low
$\stackrel{\rightharpoonup}{\boldsymbol{t}} \mid 24$	[Out B1] Threshold Input	1 Byte value	1 byte	C	-	W	-	-	counter pulses (0.255)	Low
$\underline{-\vec{t}} \mid 25$	[Out 81] Forced 1 Bit	$1=$ Forced, $0=$ Not Forced	1 bit	C	-	W	-	-	switch	Low
$\underline{-\vec{t}} \mathbf{\| c}$	[Out B1] Logical connection 1	$1=$ True, $0=$ False	1 bit	C	-	W	-	-	boolean	Low
$\underline{-\boldsymbol{t}} \mid 27$	[Out B1] Logical connection 2	$1=$ True, $0=$ False	1 bit	C	-	W	-	-	boolean	Low
$\underline{-1} \mid 28$	[Out B1] Scene	Scene Control	1 byte	C	-	W	-	-	scene control	Low
$\underline{-\vec{t}} \mid 29$	[Out B1] Set Preset $1 / 2$	Telegram 0 --> Set Preset 1, Telegram 1 --> Set Preset 2	1 bit	C	-	W	-	-	switch	Low
$\underline{-1} 30$	[Out B1] Call Preset 1/2	Telegram 0 --> Call Preset 1, Telegram 1 --> Call Preset 2	1 bit	C	-	W	-	-	enable	Low
- $\overrightarrow{\boldsymbol{t}}_{\text {\| }} \mathbf{3 1}$	[Out B1] Staircase lighting Pre-warning	$1=$ Pre-warning, $0=$ No Pre-warning	1 bit	C	-	-	T	-	switch	Low
$\underline{-1} 32$	[Out B1] Staircase Time (sec)	2 Bytes value	2 bytes	C	-	W	-	-	time (s)	Low
$\stackrel{\rightharpoonup}{\text { ¢ }}$ \| 33	[Out B1] Time Switch	1 = Timer On	1 bit	C	-	W	-	-	start/stop	Low

Number	Name	Function	Description
19	[Out] Switch Feedback	$\mathrm{I}=\mathrm{On}, 0=\mathrm{Off}$	Feedback object of the status of the channel
20	[Out] Switch On/Off	$\mathrm{I}=\mathrm{On}, 0=\mathrm{Off}$	Input object to switch the channel
21	[Out] Permanent ON	$\mathrm{I}=\mathrm{On}, 0=\mathrm{Off}$	Input object to perform permanent channel switching in the Time Function, ignoring the established timing
22	[Out] Disable Time Function	I = Disable, 0 = Enable	Enable or not the Time Function
23	[Out] Change Threshold I	I Byte value	Input object that allows to change the Threshold I value of the Threshold Function via the Bus

24	[Out] Threshold Input	I Byte value	Input value that is taken as the set-point of the Threshold function
25	[Out] Forced I Bit [Out] Forced 2 Bits	I = Forced, $0=$ Not Forced 2 Bits value	Forced Order, with priority higher than standard operation. In case of selecting a 2-bit type, one of the bits indicates if the Force is active (yes/no) and with the second bit it is indicated if the force is On or Off
26	[Out] Logical connection I	$\mathrm{I}=$ True, $0=$ False	Logical connection I
27	[Out] Logical connection 2	$\mathrm{I}=$ True, $0=$ False	Logical connection 2
28	[Out] Scene	Scene Control	I-Byte object for Scenes management
29	[Out] Set Preset $1 / 2$	$\begin{aligned} & \text { Telegram } 0 \rightarrow \text { Set Preset } 1 \\ & \text { Telegram I } \rightarrow \text { Set Preset } 2 \end{aligned}$	If this object is at " 0 ", the value of Preset 1 is set, if not, Preset 2
30	[Out] Call Preset $1 / 2$	Telegram $0 \rightarrow$ Call Preset I Telegram I \rightarrow Call Preset 2	If this object is " 0 ", Preset I is set to output, if not, Preset 2
31	[Out] Staircase lighting Pre-warning	I = Pre-warning, $0=$ No Pre-warning	Enable or not the pre-warning before the end of the timing
32	[Out] Staircase Time (sec)	2 Bytes value	It allows setting the timing through the Bus
33	[Out] Time Switch	I = Timer On	Input object to start the previously set timing function

Blind Channel Objects

Number *	Name	Object Function	Length	C	R	W	T	U	Data Type	Priority
	[BL A] Blind Move Up/Down	$0=$ Up, 1 = Down	1 bit	C	-	W	-	-	up/down	Low
$\stackrel{\mid-1245}{ }$	[BL A] Blind Stop / Step Up/Down	$0=$ Step Up, 1 = Step Down	1 bit	C	-	W	-	-	step	Low
	[BL A] Forced Input	2 Bits control	2 bit	C	-	W	-	-	switch control	Low
$\stackrel{\|+\| 247}{ }$	[BL A] Wind Alarm 1	1 = Alarm, 0 = No Alarm	1 bit	C	-	W	-	-	alarm	Low
	[BL A] Wind Alarm 2	1 = Alarm, 0 = No Alarm	1 bit	C	-	W	-	-	alarm	Low
- $\overrightarrow{\boldsymbol{H}}^{\text {\| }} 249$	[BL A] Wind Alarm 3	1 Alarm, 0 = No Alarm	1 bit	C	-	W	-	-	alarm	Low
	[BL A] Rain Alarm	1 Alarm, 0 = No Alarm	1 bit	C	-	W	-	-	alarm	Low
$\stackrel{\rightharpoonup}{\text { ¢ }}$ \| 251	[BL A] Frost Alarm	1 = Alarm, $0=$ No Alarm	1 bit	C	-	W	-	-	alarm	Low
	[BL A] Scene Input	Scene Control	1 byte	C	-	W	-	-	scene control	Low
$\stackrel{\rightharpoonup}{\boldsymbol{+}}{ }^{-1} 253$	[BL A] Movement Feedback	$0=$ Up, 1 $=$ Down	1 bit	C	-	-	T	-	up/down	Low
$\stackrel{\rightharpoonup}{\boldsymbol{+}} \mid 254$	[BL A] Blind position Input	0\% = Open, 100\% = Closed	1 byte	C	-	W	-	-	percentage (0..100\%)	Low
	[BL A] Slats position Input	0\% = Open, 100\% = Closed	1 byte	C	-	W	-	-	percentage (0..100\%)	Low
$\stackrel{\rightharpoonup}{\boldsymbol{+}} \mid 256$	[BL A] Blind position Feedback	0\% = Open, 100\% = Closed	1 byte	C	-	-	T	-	percentage (0..100\%)	Low
	[BL A] Slats position Feedback	0\% = Open, 100\% = Closed	1 byte	C	-	-	T	-	percentage (0..100\%)	Low
$\stackrel{\|r\|}{\boldsymbol{+}} \mathbf{2 5 8}$	[BL A] Sun Protection Input	$1=\mathrm{On}, 0=\mathrm{Off}$	1 bit	C	-	W	-	-	switch	Low
$\stackrel{+}{+\mid} 259$	[BL A] Sun Protection position Input	0\% = Open, 100\% = Closed	1 byte	C	-	W	-	-	percentage (0..100\%)	Low

Number	Name	Function	Description
244	[BL] Blind Move Up/Down	$0=$ Up, I = Down	A 0 on this object will move-up the blind, whereas a I will move-

[BL] Blind Stop / Step Up/Down
[BL] Forced Input
2 Bits control

A 0 on this object will stop the blind or make a step-up (if enabled). A I on this object will stop the blind or make a stepdown (if enabled)

Forced order, with priority higher than standard operation. One of the bits indicates if the Force is active (yes/no) and with the second bit it is indicated if the Force is On or Off

247	[BL] Wind Alarm I	I = Alarm, $0=$ No Alarm	Wind alarm input object
248	[BL] Wind Alarm 2	I = Alarm, $0=$ No Alarm	Wind alarm input object
249	[BL] Wind Alarm 3	I = Alarm, $0=$ No Alarm	Wind alarm input object
250	[BL] Rain Alarm	I = Alarm, $0=$ No Alarm	Rain alarm input object
251	[BL] Frost Alarm	I = Alarm, $0=$ No Alarm	Frost alarm input object
252	[BL] Scene Input	Scene Control	I-byte object for Scenes control
253	[BL] Movement Feedback	$0=$ Up, $\mathrm{I}=$ Down	Information object of the movement of the blind
254	[BL] Blind position Input	0\% = Open, 100% = Closed	The blind moves to the received position (\%) through this I-byte value
255	[BL] Slats position Input	0\% = Open, 100% = Closed	The slats move to the received position (\%) through this I-byte value
256	[BL] Blind position Feedback	0\% = Open, 100% = Closed	Information object of the position of the blind
257	[BL] Slats position Feedback	0\% = Open, 100% = Closed	Information object of the position of the slats
258	[BL] Sun Protection Input	$\mathrm{I}=\mathrm{On}, 0=\mathrm{Off}$	Sun Protection input object
259	[BL] Sun Protection position Input	0\% = Open, 100% = Closed	Sun Protection position input object

